
Tetrahedron Letters 49 (2008) 6016–6018
Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier .com/ locate / tet let
Cyclization of N,N-diethylgeranylamine N-oxide in one-pot operation:
preparation of cyclic terpenoid-aroma chemicals

Kunihiko Takabe *, Takashi Yamada, Takenori Miyamoto, Nobuyuki Mase
Department of Molecular Science, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432-8561, Japan

a r t i c l e i n f o a b s t r a c t
Article history:
Received 4 July 2008
Revised 25 July 2008
Accepted 1 August 2008
Available online 7 August 2008
0040-4039/$ - see front matter � 2008 Elsevier Ltd. A
doi:10.1016/j.tetlet.2008.08.001

* Corresponding author. Tel./fax: +81 53 478 1148.
E-mail address: tcktaka@ipc.shizuoka.ac.jp (K. Tak
Acid promoted cyclization of the geranylamine N-oxide (E)-4 followed by base-catalyzed intramolecular
aldol condensation afforded 1-acetyl-4,4-dimethyl-1-cyclohexene (7) in one-pot operation. Reduction of
7, which possess strong fruity odor, followed by lipase-catalyzed kinetic resolution furnished the acetate
(R)-26 (>49.9% yield, >99% ee) and the recovered alcohol (S)-25 (>49.9% yield, >99% ee, herbal odor).

� 2008 Elsevier Ltd. All rights reserved.
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Scheme 1. Reagents and conditions: (a) 40% H2SO4, 120 �C, 20 h; (b) BF3�OEt2,
AcOH, 30 �C, 6 h; (c) H2O2, MeOH, rt, 48 h, then PtO2, rt, 24 h.
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Scheme 2. Reagents and conditions: (a) Et2NH, Li, 55 �C, 5 h; (b) Et2NH, n-BuLi,
5–65 �C, 13 h; (c) H2O2, MeOH, rt, 48 h, then PtO2, rt, 24 h; (d) (i) H2SO4, H2O, 100 �C,
24 h; (ii) NaOH, H2O, 100 �C, 24 h.
N,N-Diethylgeranylamine ((E)-1)1a,b and N,N-diethylnerylamine
((Z)-1)1c are key intermediates for the preparation of industrially
important acyclic and cyclic monoterpenes such as linalool,2 gera-
niol,3 citral,4 citronellal,5 l-menthol,6 and liral.7 Previously, we
reported sulfuric acid promoted regioselective cyclization of (Z)-1
to N,N-diethyl b-cyclogeranylamine (2), in contrast, cyclization of
(E)-1 with BF3�OEt2 afforded a 20:80 mixture of N,N-diethyl a-
and c-cyclogeranylamine (3) (Scheme 1).8 As a continuation of
our studies into the use of 1 in organic syntheses,9 we wondered
whether N,N-diethylgeranylamine N-oxide (4) could behave like
1. Although terpenoid N-oxides are well known as a good substrate
for Meisenheimer rearrangement,10 to our best knowledge, cycliza-
tion involving C–C bond formation as well as C–C bond fission has
not been studied previously. Herein, we report an acid promoted
cyclization of the N-oxide 4 and lipase-catalyzed kinetic resolution
of the odorous cyclized derivative 7.

N,N-Diethylgeranylamine ((E)-1)11 and N,N-diethylnerylamine
((Z)-1)12 were stereoselectively prepared by a simple, one-step
procedure from myrcene (5) and isoprene (6), respectively
(Scheme 2). Oxidation of (E)-1 with 31% H2O2 followed by addition
of PtO2 to decompose excess oxidizing agent gave the N-oxide 4.
Cyclization of the crude N-oxide 4 was carried out by the following
manner.13 To a colorless solution of the crude N-oxide 4 in H2O was
added 50% H2SO4 aq, then the mixture changed from colorless to
pink. After the acidic reaction mixture was made strongly basic
with NaOH pellets, the mixture gradually separated into pale yel-
low aqueous layer and dark brown organic layer. Interestingly, this
dark brown liquid gave off good fruity odor. The structure of prod-
uct was confirmed as 1-acetyl-4,4-dimethyl-1-cyclohexene (7) in
comparison with alternatively synthetic enone 7.14 Similarly, the
enone 7 was obtained from N,N-diethylnerylamine ((Z)-1) in 55%
yield. Both of regioisomers 1 resulted in the formation of the same
ll rights reserved.

abe).
enone 7. This outcome indicated that cyclization progressed
through the same intermediate.

Cyclization of N,N-diethylfarnesylamine (8) was also examined.
The crude N-oxide 9 was obtained by oxidation of 8 with 31% H2O2.
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Scheme 6. Proposed reaction sequence.
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Scheme 3. Reagents and conditions: (a) H2O2, MeOH, rt, 48 h, then PtO2, rt, 24 h;
(b) (i) H2SO4, H2O, 100 �C, 24 h; (ii) NaOH, H2O, 100 �C, 24 h.
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One-pot operation under the same procedure gave the bicyclic
enone 10 in 33% yield as a single diastereomer (Scheme 3).15

The proposed reaction mechanism for cyclization of the N-oxide
4 is shown in Scheme 4. Acid promoted cyclization of the N-oxide 4
formed a mixture of N,N-diethyl a- and c-cyclogeranylamine N-
oxide (11), which readily protonated to give the cation intermedi-
ate 12. Nucleophilic cyclization of 12 furnished the bicyclic inter-
mediate 13, which was transformed to the keto-enamine
intermediate 14 with C–C bond fission. Hydrolysis and base-cata-
lyzed intramolecular aldol condensation of keto-aldehyde 15 affor-
ded the desired enone 7.

Following experiments have been performed to prove the above
proposed reaction mechanism. The N-oxide 17 derived from
b-cyclogeranylamine 2 was reacted in the same way to cyclization
of the N-oxide 4 to give 1,2,3,4-tetramethylbenzene (18) in 53%
yield through sequential elimination, isomerization, and migration
(Scheme 5). Thermal elimination of 17 gave 1,1-dimethyl-2,3-di-
methylenecyclohexane (19),9b which was isomerized to the diene
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Scheme 4. Proposed reaction mechanism for cyclization of the N-oxide 4.
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Scheme 5. Reagents and conditions: (a) H2O2, MeOH, rt, 48 h, then PtO2, rt, 24 h;
(b) (i) H2SO4, H2O, 100 �C, 24 h; (ii) NaOH, H2O, 100 �C, 24 h.
20. Aromatization of the cyclic end group with concomitant regio-
selective migration of one methyl group from the geminal
dimethyl functionality afforded the product 18 (Scheme 6).16 On
the other hand, in the case of a- and c-cyclogeranylamine 11,
the cyclic enone 7 was formed in 41% yield (Scheme 5). These
results indicate that the cyclization progressed through a- and
c-cyclogeranylamine N-oxide intermediate 11 not through b-inter-
mediate 17.

The reactive difference between N-oxide 11 and 17 was illus-
trated by the protonation ability. Terminal and/or trisubstituted
olefin intermediate 11 is better proton acceptor than tetrasubsti-
tuted olefin intermediate 17. Therefore, the N-oxide 11 was easily
protonated to give the cyclized product 7 through the intermediate
12, in contrast, thermal elimination preferentially proceeded in the
case of 17 (Scheme 6).

Cyclization of the terminal olefin 21 and/or internal olefin 22
gave the same ketone 24 in 34–35% yields; therefore, location of
double bond did not affect the reactivity (Scheme 7). In addition,
C–C bond fission proceeded selectively at between b and c position
to the nitrogen atom. These experiments (Schemes 5 and 7) sup-
port that the cyclization of the N-oxide 4 includes (1) acid pro-
moted cyclization, (2) nucleophilic cyclization of N-oxide, and (3)
selective C–C bond fission as shown in Scheme 4.

Since the cyclic enone 7 is strong fruity, odor of the derivatives
from 7 should be interesting. Sodium borohydride reduction of 7
gave the racemic alcohol 25 in 99% yield. Lipase-catalyzed kinetic
resolutions of 25 were carried out using 0.5 equiv of vinyl acetate
in diisopropyl ether at 25 �C. All of lipase tested except M-10 and
Newlase F provided the enantiomerically pure acetate 26 with R
configuration and the recovered alcohol 25 with S configuration
determined by derivation to the Mosher ester.17 Especially, lipase
AK (Pseudomonas fluorescens, Amano Enzyme Co, Ltd) was the best
catalyst to afford (R)-26 in >49.9% yield with excellent E value.18,19

Both enantiomers of the acetate 26 and alcohol 25 were prepared
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Scheme 7. Reagents and conditions: (a) (i) 40% H2SO4, 100 �C, 24 h; (ii) NaOH, H2O,
100 �C, 24 h.



Table 1
Lipase-catalyzed kinetic resolution of the racemic alcohol 25
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(R)-25 (63%)
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Entry Lipase Conversion (%) (R)-26 ee (%) E value

1 M-10 0 — —
2 Newlase F 0 — —
3 A-6 4.4 >99 208
4 PEG 4.5 >99 208
5 MY 9.7 >99 221
6 OF 13.8 >99 232
7 CHIRAZYME� L-2 30.9 >99 308
8 PSA-30 35.4 >99 344
9 PS-D 38.2 >99 373

10 NOVOZYME� 38.3 >99 374
11 PL 48.9 >99 738
12 AK >49.9 >99 992

Reagents and conditions: (a) NaBH4, CeCl3�7H2O, MeOH, 0 �C, 2 h; (b) vinyl acetate
(0.5 equiv), lipase (100 mg/mmol), i-Pr2O, 25 �C; (c) K2CO3, MeOH, 25 �C, 6 h; (d)
Ac2O, Et3N, DMAP, Et2O, rt, 2.5 h.
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by standard hydrolysis ((R)-26 ? (R)-25) or acetylation ((S)-
25 ? (S)-26). Interestingly, odor of (S)-isomers 25 and 26 is stron-
ger and more sensory active than those of (R)-isomers, particularly,
(S)-alcohol 25 shows good herbal odor (see Table 1).20

In summary, we have developed acid promoted cyclization of
geranylamine N-oxide (E)-4 followed by base-catalyzed intramo-
lecular aldol condensation afforded the cyclic enone 7 in one-pot
operation. Reduction of 7, which possess strong fruity odor, fol-
lowed by lipase-catalyzed kinetic resolution furnished the acetate
(R)-26 (>49.9% yield, >99% ee) and the recovered herbal alcohol (S)-
25 (>49.9% yield, >99% ee). Further studies focusing on the use of
acid promoted cyclization of N-oxide derivatives are currently
under investigation and will be reported in due course.
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